Here’s how Monty’s deal works, in the math problem, anyway. (On the real show it was a bit messier.) He shows you three closed doors, with a car behind one and a goat behind each of the others. If you open the one with the car, you win it. You start by picking a door, but before it’s opened Monty will always open another door to reveal a goat. Then he’ll let you open either remaining door.
Suppose you start by picking Door 1, and Monty opens Door 3 to reveal a goat. Now what should you do? Stick with Door 1 or switch to Door 2?
Before I tell you the answer, I have a request. No matter how convinced you are of my idiocy, do not immediately fire off an angry letter. In 1991, when some mathematicians got publicly tripped up by this problem, I investigated it by playing the game with Monty Hall himself at his home in Beverly Hills, but even that evidence wasn’t enough to prevent a deluge of letters demanding a correction.
Before you write, at least try a few rounds of the game, which you can do by playing an online version of the game. Play enough rounds and the best strategy will become clear: You should switch doors.
He says that this problem also arises in other types of experiments. We have a remarkable ability to rationalize our choices even when they do not improve our "happiness". Read the article here.